TEMA:

Технологические емкости

ЭПОКСИДЫ ХОЛОДНОГО НАНЕСЕНИЯ ПРИНИМАЮТ НА СЕБЯ ЖАР

Технологические емкости, используемые при повышенных температурах и давлениях, представляют собой одну из наиболее сложных в обслуживании сред и являются основной проблемой для владельцев активов и операторов. Емкости, в частности, использующиеся для сепарации масла/ воды и газа, попадающего в технологический поток, постоянно подвержены воздействию множества агрессивных условий, которые, в конечном итоге, могут привести к значительной внутренней коррозии.

Почему традиционные покрытия не справляются

При проектировании систем, устойчивых к погружению в среду с высокой температурой, важно рассмотреть причины разрушения стандартных покрытий. Множество таких материалов основано на растворителях; в таких случаях, помимо прочих ограничений, проблемы связаны с удержанием растворителя в пленке. Такой удерживаемый растворитель впоследствии увеличивается в объеме, когда подвергается воздействию высоких температур, а это, в свою очередь, ведет к образованию пузырей. Кроме того, в некоторых случаях возникает обмен между удерживаемым растворителем и технологической жидкостью, . который ведет к разбуханию и преждевременному выходу из строя.

Системы с низкой плотностью поперечных связей в высокой степени подвержены проникновению

Сепаратор, подверженный коррозии

воды и газов, ведущему к коррозии. Это явление в значительной степени усиливается, когда полимерная система достигает температуры размягчения, при которой расстояние между поперечными связями молекул полимера увеличивается, а проникновение происходит намного интенсивнее. Даже стандартные эпоксидные смолы, обычно имеющие высокое сопротивление проникновению при температурах окружающей среды, обеспечивают лишь временную защиту при повышенных температурах.

Инновационное решение для погружения в среду с высокой температурой

Компания Belzona разработала ряд органических эпоксидных внутренних облицовок для технологических емкостей, обеспечивающих длительную защиту от коррозии при повышенном давлении и температуре. Уникальная система бинарного отверждения позволяет быстро создать защиту от среды погружения на этапе доотверждения в процессе эксплуатации. Конечная система имеет очень высокую температуру стеклования. А это значит, что по сравнению со стандартными системами поперечные связи здесь усиливаются при повышении рабочей температуры.

При применении полимерной матрицы с высокой плотностью поперечных связей и армирующими наполнителями, обеспечивающими барьерную защиту, тенденцию к проникновению воды и

Образование пузырей в покрытии с низкой плотностью поперечных связей

Издание 105

Содержание

Полная защита от коррозии

Органическая облицовка выступает в роли барьера для коррозионной среды...

Холодное крепление внутренних фитингов

2

Не подверженное напряжению крепление

Защита слабого звена

Изоляция фланцев и патрубков

Предотвращение коррозии

Защита технологических емкостей на этапе проектирования

ХОЛОДНОЕ КРЕПЛЕНИЕ – БЕЗОПАСНАЯ АЛЬТЕРНАТИВА СВАРКИ

Материалы Belzona можно использовать для холодного крепления внутренних фитингов и внешних элементов емкостей. Композитные материалы холодного крепления обеспечивают эквивалентную защиту внутренних стенок технологических емкостей от коррозии и воздействия химических вешеств. Несколько независимых испытаний также подтвердили надлежащую адгезию и механические свойства, которые превзошли показатели сварки.

Компания Belzona провела испытания совместно с Регистром Ллойда для измерения адгезионной прочности на растяжение и адгезионной прочности на отслаивание материала Belzona 1511 (Super HT-Metal) в марте 2004 г. Испытания проводились с использованием сервогидравлической испытательной установки Шенк/Инстрон в условиях влажности 50% и температуры 23°C.

Адгезионное испытание	Макс. нагрузка (кН)
Адгезионная прочность на растяжение	51,31
Адгезионная прочность	20,62
Адгезионная прочность на отслаивание	22,32

Материал <u>Belzona 1111 (Super Metal)</u> для заплаточного ремонта методом холодного крепления был протестирован в Испытательной лаборатории г. Лихай. Результаты показали, что область ремонта выдерживала давление до 3 400 фунтов/дюйм² (23 H/м²).

газа можно значительно снизить, обеспечив тем самым защиту при погружении при высоких температурах воды. Всесторонние внутрифирменные и независимые испытания, включая более 150 иммерсионных испытаний при повышенной температуре / давлении с использованием автоклавов, показали следующее:

- Температура тепловой деформации выше 250 °C.
- Защита при погружении в воду / углеводороды при температуре до 180 °C.
- Быстрое доотверждение в процессе эксплуатации, устраняющее необходимость длительной сушки и снижающее риск проникновения во время исходного доотверждения в процессе эксплуатации.
- Умеренное изменение физических свойств в диапазоне температур 0 – 200 °C.
- Ограниченное снижение адгезионной прочности в том же диапазоне температур является сопутствующим фактором превосходных характеристик покрытия при погружении в среду с высокой температурой.

Облицовки Belzona тщательно протестированы в лабораторных условиях и в условиях эксплуатации на устойчивость к высокому давлению, эрозии, выпариванию, декомпрессии и катодному отслаиванию. При рассмотрении характеристик емкости можно подобрать соответствующее решение.

Как работает технология Belzona – внутренняя облицовка

В течение многих лет компания Belzona разрабатывала различные органические облицовки для технологических емкостей, способные выдерживать различные суровые условия эксплуатации. Облицовки Belzona можно наносить распылением или вручную для устранения коррозионного повреждения и ремонта существующих покрытий, включая традиционные стеклонаполненные полимерные системы, или использовать на этапе проектирования в качестве профилактической меры.

На спецификацию материала облицовки влияют фактическая конструкция, технологические жидкости и условия эксплуатации емкостей; они должны соответствовать спецификации продукта на основе данных, полученных в результате внутрифирменных и внешних испытаний. Также учитывается практический опыт применения указанных материалов, который позволяет рассчитать проектный срок службы облицовки.

Подготовка поверхности проводится в соответствии с установленными принципами: обычно после испытания на внутренние загрязнения поверхность

Наносимая распылением облицовка Belzona

очищают, обезжиривают и абразивоструйно обрабатывают, обеспечивая чистоту «почти до белого металла» ISO Sa 2.5 и минимальный профиль 75 мкм (3 мила). Среду нанесения также контролируют. Выполняют необходимые измерения температур, влажности подложки и окружающей среды. Эти показатели снижают до соответствующего уровня. Для снижения риска использования несоответствующих стандартов нанесения специалисты по нанесению и контролеры покрытий проходят обучение и аттестацию в компании Belzona.

Технология формирования поверхности фланцев

Коррозия поверхностей фланцев является основной проблемой для емкостей высокого давления, где поверхность должна быть изолирована для предотвращения окисления. Композитные материалы Веlzona не подвержены коррозии и образуют прочную связь с поверхностью фланца, а для придания формы определенному материалу Belzona используются предварительно изготовленные формообразователи.

Вкладыши патрубков малого диаметра

Для защиты патрубков малого сечения недостаточно стандартного покрытия, так как при нанесении на них покрытия существует риск поверхностной пористости и недоработок. Эту проблему можно устранить иедоработок. Эту проблему можно устранить патрубков Belzona, не подверженных коррозии. Вкладыши и сам патрубок перед установкой и соединением пропитываются кроющим материалом Belzona для обеспечения защиты от коррозии.

Холодное крепление фитингов емкостей

Сварка внутренних элементов емкостей требует послесварочной термообработки. Кроме того, в некоторых случаях горячая обработка недопустима. Техника холодного крепления применяется во многих отраслях, а в последние годы лабораторные и эксплуатационные испытания подтвердили, что решение холодного крепления ВеІzопа для технологических емкостей является предпочтительным, чтобы модификация могла соответствовать изменениям характеристик потока.

Технологическая емкость защищена от коррозии

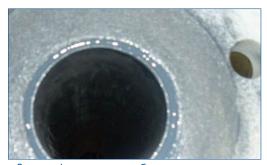
РЕШЕНИЕ ДЛЯ ЗАЩИТЫ ОТ КОРРОЗИИ ЕМКОСТИ ВЫСОКОГО ДАВЛЕНИЯ ПНП Р57

Проверка проведена через четыре года эксплуатации.

Результат – безупречный

В феврале 2008 г. крупная нефтегазовая компания подписала договор на поставку на ПНП Р57 установки, запланированную через 33 месяца. Строительство началось в Сингапуре и Бразилии, и были превышены договорные требования в размере 65% бразильских ресурсов.

Установка эксплуатировалась в течение первых трех производственных лет на месторождении Джубарте. ПНП, способная обрабатывать до 180 000 баррелей нефти и 2 000 000 кубометров газа в сутки, обеспечивала добычу из 22 соединенных между собой скважин.


Для четырех емкостей высокого давления (двух обессоливающих установок, обезвоживающей установки и сепаратора) для работы с жидкими углеводородами при высоких температурах, V-T6205A, V-T6205B, V-T6204 и V-T6206 соответственно, требовалась внутренняя защита от коррозии.

Прежде чем предложить решение для облицовки емкостей в виде материала Belzona 1591 (Ceramic XHT), способного выдерживать температуры при погружении до 180°С, были тщательно установлены требования по температуре, давлению и химической стойкости. Также требовалась изоляция от среды прочих областей, обычно подверженных коррозии, таких как патрубки малого диаметра и поверхности фланцев, с помощью материалов Belzona.

Работы провели в сентябре 2009 г., а в феврале 2013 г. вскрыли V-T6205A для проверки. Состояние оценили как «безупречное»: облицовка, поверхности фланцев и патрубки не имели следов повреждения.

Нанесение в 2009 г.

Защита фланцев и патрубков малого диаметра

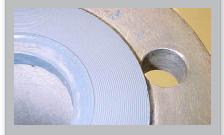
Проверка в 2013 г. – безупречное состояние

Название емкости	V-T6205A/B	V-T6204	V-T6206
Тип	Обессоливающие установки	Установка предварительного обезвоживания	Сепаратор
Используемая жидкость	Сырая нефть	Сырая нефть	Сырая нефть
Расчетная температура	160℃	160°C	160°C
Рабочая температура	120°C	120°C	120°C
Расчетное давление	1451,3 кПа изб.	1451,3 кПа изб.	1451,3 кПа изб.
Рабочее давление	598,2 кПа изб.	696,2 кПа изб.	882,6 кПа изб.

ПРЕДСТАВЛЯЕМ НОВОЕ ПОКОЛЕНИЕ ВЫСОКОТЕМПЕРАТУРНЫХ ВНУТРЕННИХ ОБЛИЦОВОК ТЕХНОЛОГИЧЕСКИХ ЕМКОСТЕЙ

Наносимая распылением <u>Belzona 1523</u> и Наносимая кистью <u>Belzona 1593</u>

Инновационная формулировка способствует простому нанесению и инспекции. Предотвращающие растрескивание эластичные основы обеспечивают повышенную ударную вязкость и алаптивность.


ЗАЩИТА СЛАБОГО ЗВЕНА

Эрозия-коррозия патрубков малого диаметра и поверхностей фланцев может иметь негативные последствия для эксплуатации емкости. Патрубки, в частности, могут очень быстро разрушаться, а их ремонт с применением стандартных кроющих систем представляет большие трудности вследствие их длины и узкости.

Предварительно изготовленные композитные вкладыши патрубков Belzona «вклеиваются» в патрубки малого диаметра и, тем самым, устраняют риск поверхностной пористости и недоработок. Композитные вкладыши также могут выступать в качестве изнашиваемого слоя защиты от коррозии в экстремальных абразивных условиях.

Совместно с технологией формирования поверхностей фланцев можно эффективно изолировать слабые места емкостей от коррозионной среды.

Комплект для формирования поверхностей фланцев уже доступен для заказа и состоит из принадлежностей, необходимых для выполнения работ по формированию поверхностей фланцев. На данный момент доступна версия для 300 фунтов/дюйм², которая включает в себя шесть формообразователей (2 x 2 дюйма, 2 x 3 дюйма, 2 x 4 дюйма), предназначенных для всех типов работ.

ЗАЩИТА ТЕХНОЛОГИЧЕСКИХ ЕМКОСТЕЙ НА ЭТАПЕ ПРОЕКТИРОВАНИЯ

Европейское бюро проектирования сравнило экономическую выгоду в течение срока службы разделителя фаз. Используя стандартную углеродистую сталь, облицованную нержавеющей сталью 625, предположили, что в течение срока службы актива она не потребует обслуживания. Как часть программы снижения расходов рассмотрели защиту металла основания углеродистой стали с помощью облицовки Belzona, для которой были запланированы расходы на мелкий ремонт каждые 5 лет. При добавлении капитальных и эксплуатационных затрат вариант с применением материала Belzona оказался в 3,5 раза более экономически выгодным.

Компания Belzona рекомендует наносить полное решение для защиты от коррозии на этапе проектирования, чтобы предотвратить коррозию, включая

- Внутренняя облицовка технологической емкости
- Защита патрубков малого диаметра
- Защита поверхностей фланцев
- Холодное соединение фитингов

Belzona предоставляет поставку продуктов и услуги по нанесению с помощью международной Дистрибьюторской сети. Эта сеть была специально создана для предоставления клиентам прямого доступа к материалам, специализированным услугам по нанесению, а также услугам по проверке и контролю. Задачей компании Belzona является выполнение специализированных требований по ремонту и обслуживанию в целевых отраслях и рынках по всему миру.

МОДЕРНИЗАЦИЯ МНОГОФАЗНЫХ СЕПАРАТОРОВ

Инспекция установленных методом холодного крепления фитингов после восьми лет эксплуатации

В 2003 г. компания Opus получила договор, в соответствии с которым она должна была рассмотреть и порекомендовать экономически выгодные пути модернизации для повышения производительности и работоспособности, а также для максимального увеличения пропускной способности сепаратора продукции 1 ступени. Как и для большинства видов модернизации выполнение сварки на существующей емкости являлось недопустимым. Программа испытаний подтвердила, что решение холодного соединения Belzona является идеальным как с точки зрения адгезии, так и с точки зрения механической прочности.

Новые перегородки с более низкими краями опирались на балки, закрепленные внутри емкости с помощью новых скоб, которые были прикреплены к стенке емкости с помощью материала Belzona и нескольких промежуточных кронштейнов, зафиксированных на существующих скобах. Это позволило создать прочную структуру непосредственно в центральной секции емкости. Комплекты пластин опирались на новые балки, закрепленные с помощью материала Belzona. Два компонента удлинения сливных

Балки холодного соединения

Крепление верхних фитингов

порогов подсоединялись болтами к верхней части существующих сливных порогов, а уплотнение соединения с боковыми стенками емкости было достигнуто путем крепления новых скоб с помощью материалов Belzona.

Учитывая высокое будущее содержание воды, существующий выпускной патрубок для воды имел недостаточный диаметр. Для устранения этой проблемы было принято решение провести существующие выпускные патрубки для нефти и воды через сливной порог. Новая концепция состояла из изготовленных коротких коленных секций и модифицированной отбивной решетки для соответствия новой компоновке. Затем контактные секции были обработаны для вставки в каналы существующих патрубков и герметизированы с помощью материалов Belzona.

Под корпусы каплеотделителя установили новые несущие конструкции. Их закрепили в переборках, оставшихся после снятия существующего каплеотделителя. Между верхним фланцем и оболочкой емкости был нанесен герметизирующий слой материала Belzona. Затем обеспечили вертикальную нагрузку с помощью регулировочных винтов, чтобы обеспечить сжатие герметизирующей среды в процессе отверждения.

Разработали и создали комплекты коалесцирующих пластин в виде модульных ячеек, которые опирались внутри емкости на поперечные балки, установленные на подсоединенные к стенкам емкости новые скобы. К балкам во время соединения прикрепили нижние ряды ячеек и оставили на время отверждения для обеспечения перпендикулярности и правильного расположения балок.

Через 8 и 10 лет после выполнения работ выполняли проверку сепаратора. Закрепленные с помощью материалов Belzona фитинги находились в превосходном состоянии.

Проверка через восемь лет

